
LA-UR-21-28707
Approved for public release; distribution is unlimited.

Title: Summary of GNU Octave Lady Godiva Simulator

Author(s): Kimpland, Robert Herbert
Determan, John C.
Kim, Seung Jun
Wass, Alexander Joseph

Intended for: Report

Issued: 2021-09-01

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Page 1 of 10

Summary of GNU Octave Lady Godiva Reactor Simulator

8/17/21

Robert Kimpland, John Determan, Jun Kim, Alexander Wass

Introduction

A pseudo real-time interactive reactor simulator for the Lady Godiva reactor has been developed using
the GNU Octave software package. The simulator tracks the time-dependent power and fuel
temperature behavior of the Lady Godiva reactor during sub-prompt critical transients. Users interact
with the simulator by controlling reactivity input. This input occurs through users repositioning a control
rod as desired during simulator operation. Various reactor parameters are displayed graphically in near
“real time,” facilitating user assessment and feedback input. The reactor model consists of a lumped-
fuel core, a single control rod, and a simple heat transfer mechanism that allows heat to be rejected
from the core. The goal of the simulator is to demonstrate in real-time the system response to reactivity
perturbations, the effect of reactivity feedback, and the effect of temperature-dependent equilibrium
conditions. The dynamic behavior of the reactor is primarily driven by the relative characteristic time-
constants between the delayed neutrons and the overall heat transfer parameter. The simulator will
allow users to gain experience performing standard reactor operations, such as establishing steady-state
at different fuel temperatures and making power level changes.

Lady Godiva Reactor Model

A simple dynamic model has been developed to simulate the transient behavior of the Lady Godiva
Assembly. The goal of this effort is to test a suitable mathematical engine that powers potential reactor
simulator platforms. This model combines the point reactor kinetics model with an energy equation for
the reactor fuel, and a simple model that describes reactivity input from a control rod. These models are
coupled together through a governing assembly reactivity equation and through energy deposition in
the fuel. The assembly prompt neutron kinetics is described by the following expression

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝛽𝛽
𝛬𝛬 �

(𝑅𝑅 − 1)𝑃𝑃 + �𝑓𝑓𝑖𝑖
𝑖𝑖

𝐷𝐷𝑖𝑖�

where

𝑓𝑓𝑖𝑖 =
𝛽𝛽𝑖𝑖
𝛽𝛽

The delayed neutron precursor contribution is given by the following

𝑑𝑑𝐷𝐷𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝑖𝑖(𝑃𝑃 − 𝐷𝐷𝑖𝑖)

The reactivity equation for the assembly is given by

𝑅𝑅 = 𝑅𝑅𝐶𝐶𝐶𝐶 +∝𝑇𝑇 ∆𝑇𝑇𝑓𝑓

Page 2 of 10

This equation includes a single reactivity feedback mechanism driven by fuel temperature. During
reactor simulator operation, time-dependent reactivity input is controlled through user determined
control rod positioning. The relationship between control rod position and assembly reactivity is given
by

𝑅𝑅𝐶𝐶𝐶𝐶 = −1 +
2
𝜋𝜋
𝑅𝑅𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 �

𝜋𝜋
2
ℎ
𝑎𝑎
−

1
4

sin�
2𝜋𝜋ℎ
𝑎𝑎
��

This expression is based on the one-group perturbation model for a simple control rod. The reactivity
input to the assembly by the movement of the control rod is a function of the total integral reactivity
worth of the control rod 𝑅𝑅𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚, and its position ℎ, within the core.

During reactor simulator operation, fission energy is deposited into the fuel causing its temperature to
increase. As the fuel temperature increases, heat transfer via natural convection occurs, causing heat to
be rejected from the assembly. This energy balance scheme allows for steady-state operating conditions
to be established at various excess reactivity inputs. The temperature model for the fuel is given by

𝑑𝑑𝑇𝑇𝑓𝑓
𝑑𝑑𝑑𝑑

=
𝑝𝑝

𝑀𝑀𝑓𝑓𝐶𝐶𝑝𝑝
− 𝛾𝛾(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑜𝑜)

where the assembly power is given by

𝑝𝑝 = 𝑝𝑝𝑜𝑜𝑃𝑃

Page 3 of 10

Index

𝑎𝑎 = Active length of Control Rod (6 inches)

∝𝑇𝑇 = Temperature coefficient of reactivity feedback ($/K)

𝛽𝛽 = Total delayed neutron fraction

𝛽𝛽𝑖𝑖 = Delayed neutron fraction of ith group

𝐶𝐶𝑝𝑝 = Specific heat of fuel (MJ/kg/K)

𝐷𝐷𝑖𝑖 = Normalized delayed neutron precursor contribution of ith group

𝑓𝑓𝑖𝑖 = Normalized delayed neutron fraction of ith group

𝛾𝛾 = Overall heat transfer coefficient (1/s)

ℎ = Position of Control Rod (inches)

𝛬𝛬 = Mean neutron generation time (s)

𝜆𝜆𝑖𝑖 = Delayed neutron decay constant for ith group (1/s)

𝑀𝑀𝑓𝑓 = Mass of fuel (kg)

𝑃𝑃 = Normalized assembly power

𝑝𝑝 = Assembly power (MW)

𝑝𝑝𝑜𝑜 = Initial assembly power (MW)

𝑅𝑅 = Assembly reactivity ($)

𝑅𝑅𝐶𝐶𝐶𝐶 = Control Rod reactivity input ($)

𝑅𝑅𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 = Total Control Rod integral reactivity worth (1.40 $)

𝑇𝑇𝑓𝑓 = Assembly fuel temperature (K)

𝑇𝑇𝑜𝑜 = Initial assembly fuel temperature (K)

𝑡𝑡 = time (s)

Page 4 of 10

GNU Octave Lady Godiva Reactor Simulator Model

The LadyGRS55.m file contains the complete stand-alone Octave reactor simulator model. The simulator
is driven by the MATLAB ODE solver ode23s, which employs the anonymous function f_anon to combine
the functions eval_rhs and eval_input. The function eval_rhs contains the state variable definitions for
the Lady Godiva reactor model. The function eval_input contains the dependent variable definitions for
the Lady Godiva reactivity model.

The “real time” nature of the simulator is based on an execution scheme using the Octave tic, toc, and
pause functions. Within a for-loop, the tic function is initiated and the user controlled reactivity input is
interrogated. The ODE solver then solves a 10 second window of the reactor model. The results of the
ODE solver are concatenated each cycle, and the 10 second results and the total running results are
reported. After these tasks are performed, the toc function is called to obtain the “wall clock” elapsed
time. The pause function is then used to allow 10 seconds of wall clock minus the cycle execution
elapsed time to pass before starting the next cycle.

The simulator begins by displaying a title and the current operating conditions at the Octave command
line. The Lady Godiva reactivity model is pre-set to have delayed critical occur at a control rod position
of approximately 3.67” while the fuel temperature remains at the initial fuel temperature. The term
zero-power, which is displayed along with the control rod position, implies an initial starting assembly
power that is sufficiently low to keep the fuel temperature roughly constant at the beginning of a
simulation. The simulator then generates an integral control rod worth curve using the function
controlrod2, and displays the data in Figure 1. This curve relates the reactivity worth of the control rod
to its position within the assembly. The user is then prompted to enter the initial starting power of the
assembly and the initial fuel temperature at the Octave command line. The Octave input function is
used to query these values. With the initial fuel temperature obtained, the initial conditions for the state
variables are defined in the 9x1 array x0.

At this point, an Octave for-loop is initiated that drives the cyclical ODE solver scheme. The tic function is
called to start the cycle’s running clock. The user controlled control rod position, which is located in a
text file called CRP.txt, is automatically interrogated by the simulator through the use of the Octave
readtext function. This interrogation occurs every cycle whether the user chooses to make an input
change or not. An Octave if-statement checks the value of the control rod position to see if a simulator
termination flag has been given by the user. A control rod position greater than 6” signals simulator
termination and the break function ends the for-loop execution. The control rod position input is
converted to reactivity with the function controlrod. Next the 6x1 time-dependent reactivity input array
RE is defined.

The tin and tout parameters specify the time boundaries for each successive 10 second window. Each
cycle they are updated and sent to the ODE solver through the ts array. The anonymous function f_anon
is defined and the ode23s solver is called. The ODE solver generates a 10x9 matrix called xs that contains
the output state variables for the 10 second window. The matrix gs, which contains the running tally of
state variables through every cycle, is updated by using the matrix concatenation operator, gs=[gs;xs].
Likewise, the array tg, which contains the running tally of times through every cycle, is updated using the
concatenation operator, tg=[tg;ts].

Page 5 of 10

With the output matrices xs and gs updated, Figure 2 is generated. The reactor power and fuel
temperature are displayed graphically for both the latest 10 second window and the aggregate running
time. The time integrated power is also displayed along with the current control rod position.

The state variable initial conditions array x0, is updated by redefining it as x0=xs(10,:)'. The next cycle’s
initial conditions are the final values of the state variable output matrix xs, note the re-orientation of the
array from a row to a column. This step pieces each successive 10 second window together allowing the
continuous solution of the set of model ODEs through time with user input interactions. Finally, with all
the cycle tasks completed, the cycle’s elapsed execution time is found by calling the toc function. The
pause function is used to suspend the simulator execution, so that exactly 10 seconds of wall clock
passes between each solver cycle. This pause creates the “real time” nature of the simulator since 10
seconds of wall clock time produces 10 seconds of model ODE solution results. At this point, the Octave
endfor statement signals the beginning of a new cycle.

GUI Installation/Operating Instructions

For installation on Windows 10:

1.) Download R, install.

https://cran.r-project.org/bin/windows/base/

You may see a message about needing administrative rights, and even error messages, near the
end of the install, but these can be ignored. It is best to not use admin rights during this install.
Also, modify the default install location. The default path should be <user home
folder>/Documents/R/R-4.0.x – omit “Documents” from this path, yielding:

<user home folder>/R/R-4.0.x

as the R installation directory.

R: R-4.0.x-win.exe (x was 4 when I started, and 5 at this writing)

2.) Download R Studio, install. If prompted to provide an admin password, do so.

https://www.rstudio.com/products/rstudio/download/#download

RStudio: RStudio-1.4.1106.exez

3.) Download and install Rtools, for building some packages on windows:

http://cran.rstudio.com/bin/windows/Rtools/

download 32 or 64 bit version as appropriate, and install.

Page 6 of 10

4.) R will call Python and Python will call the Octave “.m” file reactor model, so install Gnu Octave at
this point if not already installed. Download and run windows installer from gnu.org.

The user should verify paths on their system, in the discussion that follows.

Set the windows environment PATH variable to include the path to octave-cli.exe – by default
octave-cli should install to C:\<user home folder>\AppData\Local\Programs\GNU
Octave\Octave-x.x.x\mingw64\bin, but you can search on the executable name to find it. To set
the environment variable, type “environment” in the windows search box and click on the entry
“Edit the system environment variables”. In the resulting dialog click “Environment Variables…”.
Under System Variables, find “Path” and double click it. Click new and type or paste in the path
to octave-cli.exe.

We also need to set a path for the tools in Rtools. Click “New” again and enter
“C:\rtools40\usr\bin”.

Click OK 3 times to exit the dialogs. If R is already running, it is like best to stop and restart R
Studio to be sure it is aware of the new path information.

5.) Put files from our delivery into a path for R projects – for simplicity I suggest using c:/R Apps/ as
the base directory. Create folder “R Apps/” at C: and extract zip file contents to this directory.
Make sure that the file GodivaGui.Rproj reside sat C:/R Apps/GodivaGui, as shown below:

and C:/R Apps/GodivaGui/GodivaGui should look like:

6.) Open R Studio. In R Studio , click File / Open Project… . In the resulting dialog, navigate to C:/R
Apps/GodivaGui and select GodivaGui.Rproj. The rest of the work will be done by installing
packages into R, much as is done in Octave.

7.) Go to R console window. R needs to know some path information to use Rtools. From the R
console type (typing is best, copying from these instructions produces inappropriate quotation

Page 7 of 10

characters, and errors):

writeLines(‘PATH=”${RTOOOLS40_HOME}\\usr\\bin;${PATH}”’, con = “~/.Renviron”)

This will create a file in your Documents directory “.Renviron” containing the path to Rtools.

If you are behind a firewall you will get an error indicating you can’t access the internet, you
must also set the proxy url in the .Renviron file to:

http_proxy=<proxy string for your location>
or
https_proxy=<proxy string for your location>

But fair warning, I was generally not behind our firewall, and I have not worked out all the
details of this issue, I just know I ran into the error when I was behind our firewall.

Exit and restart RStudio to read this file.

In the R console type:

Sys.which(“make”)

Since we set the rtools path earlier, you should see the path we set at that time

8.) Some general notes on handling errors during R package installation:

a) make sure you have a connection to the internet

b) try repeating a failed command

c) close R, restart R, and try again, If you performed a “library(<package name>)” command, you
will need to do that again for the new R session.

These steps, as needed will generally get you through errors in package installation.

In the console, type

install.packages(“shiny”)

Say “yes” to the prompt.

9.) We need to use python to be able to run the Octave “.m” file, so we load the “reticulate” library
which integrates python into R.

Page 8 of 10

In the R console type:

Install.packages(“reticulate”)

When this finishes we can test reticulate by typing, in the R Console:

library(“reticulate”) # library loads packages for use

ocpy <- import(“oct2py”) # ocpy is just a name

What you will likely see at this point is a message saying R Studio does not know about a python
installation. While you can use reticulate commands to specify an existing python interpreter, I
would suggest saying “Y” to the question R Studio is asking – “Would you like to install
Miniconda? [Y/n]” This is a pared down version of Python, and sufficient for our need.
Preparing instructions to deal with other possible Python installations is beyond the scope of
these instructions.

Type “Y” to install Miniconda; at the end of the installation there will be an error message about
not being able to install “oct2py”, but this is normal. After installation finishes, we need to
install “oct2py” into miniconda – reticulate gives us py_install for acquiring python packages.

Type:

py_install(“oct2py”)

Type:

library(“reticulate”) # you can also use up arrows, even after exiting and restarting R)

Repeat the “ocpy <- …” command (up arrow to retrieve command, like most consoles)

Type:

ocpy

If all is well, the system will respond by printing what ocpy is:

Module(oct2py)

10.) Verify that you have a Python installation.

Open the Environmental Variables dialog again (see step 4 above). Set a path to the miniconda
package that we just installed in step 9. Click “New” and enter:

Page 9 of 10

C:\<user home folder>\AppData\Local\r-miniconda

Click OK 3 times to exit the dialogs. If R is already running, it is like best to stop and restart R
Studio to be sure it is aware of the new path information.

Open a cmd window, type python – if a python interpreter opens, all is well. Type “quit()” to
exit the interpreter.

11.) Let’s install a few more R libraries that will be used, for plotting and string manipulation. It is
best to close and reopen R Studio before continuing. If any of the following packages fails to
load, the first remedy is to close and reopen R and retry the failed installation.

In the R console type:

Install.packages(“stringr”)

Say “yes” to the prompt.

12.) In the R console type:

Install.packages(“utf8”)

13.) In the R console type:

Install.packages(“ggplot2”)

14.) In the R console type:

Install.packages(“gridExtra”)

15.) In the R console type:

Install.packages(“dplyr”)

16.) To see the results of this process, in the Windows search window, type:

cmd

A command window will open. Change directory to the C:/R Apps/GodivaGui/GodivaGui folder.
Type:

run_godiva <path to R Studio on your machine>

Page 10 of 10

The path should be <user home folder>/R/R-4.0.x/bin.

Two command windows will open – one to run the TCP server, and the other to execute the R
Shiny application. Click the “Start” button. Some time may elapse, so be patient, but you
should see the graphs open on the right side of the window, eventually. Once the graphs are
present, use the slider arrows to change the control rod position and watch the graphs
eventually respond (10 – 20 s). Click the “Stop” button to end the application.

